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Transition-metal polyhydride derivatives have been at the focus
of much experimentaland theoreticdlwork, especially dealing
with their high fluxionality* and their structure type (i.e. classical
vs nonclassical). There is scarce information on how these
properties change upon oxidation to the 17-electron configuration
because of the paucity of stable complexes. Only a few
monohydride complexes have have been isolated, facile
decomposition via deprotonation or disproportionation pathways
usually occurg. Isolable paramagnetimlyhydrides are even less
common. We are only aware of TaBbL, (L = PMe&yor L, =
dmpe¥? and [WChH,(PMes)s] " BF,~,%" as well characterized,
unambiguous examplés.Chemical reactivity studies of such
species are also rafeWhen these compounds are obtained by
one-electron oxidation of neutral precursorg réebluctive elimina-
tion is facilitated by the decreased metal p bastéiand adds to
the array of decomposition pathways availaBle.
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Figure 1. EPR spectra of complexes [Cp*M&ppe)]" (M = Mo, W;
X = H, D). Solvent= THF. The starred peak in the spectrum ?4f] ™
is due to an impurity.

We wish to report here the new complexes [Cp*Mitppe)]-
[PF] (M = Mo, ([1]PFs), W ([2]PFs)), which are accessible by
1-electron oxidation of the parent compleXesnd2 with FcPR.*?
Cyclovoltammetric studies show a reversible oxidation for both
1land2in THF (—0.75 and—0.88 V vs Fc/Ft, respectively).
Complex [I]* exhibits a triplet of quartets in the EPR spectrum
(g =1.989,ap = 28.9 G,ay = 11.8 G; see Figure 1) consistent
with coupling to three equivalent H and two equivalent P ligands.
Chemical oxidation of Cp*Mok(dppe) leads to the formation
of [1]"-d®, which is characterized by an EPR broad tripigt
1.991,ap = 28.9 G; see Figure 1). IR investigatidhshow the
expected isotope shift upon deuteration, and a2@cnT? blue
shift upon oxidation. From simple theory, the vibrational
frequency correlates directly with the bond enettyThus, the
IR data indicate that the MH/D bonds are stronger in the
oxidized materials, consistent with expectations on the basis of a
M%+—H9%~ bond polarity. Previous IR studies on Cp*FeH(dppe)
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and WHCI(PMey), indicated either no change or a slight shift
upon oxidatiorf™*>and a lowering of M-H BDE’s was indicated
for lower-valent carbonyl complexes by thermodynamic cycles
involving acidity and electrochemical measureméfts.

Despite the supposedly greater Md bond energy relative
to the neutral precursor, compleX]{ decomposes rapidIytif,
= 2 min at 25°C in either THF or CHCI,) with gas evolution,
to afford a new signal consisting of a doublet of triplets=
1.950,a0 = 16.5 G,a4 = 24.0 G; solvent independent), consistent
with the formation of Cp*MoH(dppe)(R¥; 3. [1]"-d® cor-
respondingly decomposes to yield a triplet of 1:1:1 tripleks (
= 4.0 G). This indicates thatl]* decomposes by reductive
elimination of H. The similar decomposition rate in THF and
CH,CI, suggests that Helimination may occur without solvent
precoordination. Solvent-independent-R reductive elimina-
tions from dialkyl complexes have previously been repotfed.
No solvent is coordinated to soli®,*® which is therefore
formulated as either the salt of a rather uncomthds-electron
cation or a 17-electron complex with a coordinated §&Rfand.
Solvent coordination cannot be excluded in solution. Additiona

studies on this compound are in progress and will be reporte 1.69(3): CNF-WI—P1, 162.0(2): CNEWI1-P2, 119.1(2): CNFW1—

later.

Compound 2]* exhibits a broad triplet resonance in the EPR ';; %398(52’5)(:'\‘?\/\/1 H2; 103(2); CNF-W1~HS3, 113(2); PTW1
spectrum@ = 2.017; see Figure 1), which decays slowly at room o |
temperature in THR{, = 3 h). The nature of the decomposition
products is under current investigation. Coolingt80 °C does

not affect the line shape of the signal. Oxidation of Cp*WD ? / .
(dppe) leads toZ]]*-d3,p which bet%er reveals the phosF:)horus that the replacement of a WH bond with a singly occupied W

coupling 6 = 2.022,a» = 27.6 G: see Figure 1). A single crystal orbital does not greatly affect the effective metal charge (i.e. the
of [g]Pgagcould be investigated by X-gray di)ffractidﬁ?,whigh W-H bond' IS hlghly c.ovalent).. .Although the. H positions are
permitted the location and refinement of the three hydride ligands N°t determined with high precision, the relatively long- i
(see Figure 2) separations (HtH2 2.81 A; H2-H3 2.11 A) suggest a classical
. X f A >

The cation and anion are well separated, the closest contact ormulation for P]". _The ge_ometry of )" is intermediate
being between F atoms and Cp* and dppe C ator.q A). betweerl (a pseudotr_lgonal prism) anitl (_a pseudoo_ctahedron),
Neglecting the hydrogen positions, the geometry2bf fis very i.e., the |dtial geometries adoptezg by the |speleclt£cinomplexes
close to that of [Cp*WH(dppe)], previously determined as the 1 and [Cp*MoH(dppe)(MeCNJ]*", respectively:'#
BF, salt?* The major difference consists of a small displacement
(0.025(8) A, as opposed to 0.002(9) A in the tetrahydrido

Figure 2. A view of the cation in compound?]*PF~. Selected bond
| distances (A) and angles (deg):WR1, 2.474(2); WtP2, 2.506(2);
dWl—CNT, 1.999(15); W+H1, 1.71(2); WEH2, 1.67(3); WEH3,

and P(2) toward the side of the molecule occupied by H2 and
H3 (see Figure 2). The WP and W-Cp* bond distances are
also very similar for 2]* and [Cp*WH,(dppe)],?*2 suggesting

complex) of the W atom from the plane defined by CNT, P(1), P
P P /
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